where is the macroscopic polarization as defined in the ''modern theory of polarization" [85]:

(6.38) |

and is the cell-periodic part of . Adding a corresponding term to the Hamiltonian

allows one to solve for by means of a direct optimization method.

The desired finite homogeneous electric field is specified by

`EFIELD_PEAD` = (eV/Å)

in the INCAR file.
If the `EFIELD_PEAD` tag is set, VASP will first determine the zero-field
groundstate of the system, and subsequently switch on the electric field
and compute the field-polarized groundstate orbitals.
Additionally, from the change in the macroscopic electronic polarization
due to the applied electric field, VASP calculates (part of) the components
on the diagonal of the ion-clamped static dielectric tensor (
),
in accordance with:

(6.40) |

Beware: this option is only useful if one is interested in selected components on the diagonal of the ion-clamped dielectric tensor (for instance, in cubic systems). To calculate the full ion-clamped dielectric tensor of a system

(6.41) |

from field-polarized calculations, use

N.B.: One should be aware that when the electric field is chosen to be too large, the electric enthalpy functional will lose its minima, and VASP will not be able to find a stationary solution for the field-polarized orbitals. This is discussed in some detail in [88]. VASP will produce a warning if:

(6.42) |

where is the bandgap, are the lattice vectors, and is the number of -points along the reciprocal lattice vector , in the regular ( ) -mesh. The factor is chosen to be on the safe side.

If one does not include unoccupied bands, VASP is obviously not able
to determine the bandgap and can not check whether the electric field might
be too large.
This will also produce a warning message.

Further aspects of these calculations are more conveniently
discussed by means of an example: **
in NaF**

Using the following INCAR file:

PREC = Med EDIFF= 1E-6 ISMEAR = 0 EFIELD_PEAD = 0.0 0.0 0.01The computation of the static dielectric properties from the field-polarized groundstate orbitals requires a very tight convergence of the solutions. The

KPOINTS file:

6x6x6 0 Gamma 6 6 6 0 0 0N.B.: The "PEAD" related routines only work for regular meshes of -points that include the -point, i.e. either uneven meshes (not recommended, see Sec. 5.5.3) or -centered meshes (like the one above).

NaF 4.5102 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 1 1 Direct 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.5000000000000000 0.5000000000000000 0.5000000000000000

and LDA Na_sv and F PAW datasets.

Running VASP should produce something akin to:

entering main loop N E dE d eps ncg rms rms(c) DAV: 1 -0.121171874254E+03 -0.12117E+03 -0.11093E+04 392 0.169E+03 DAV: 2 -0.290944564657E+03 -0.16977E+03 -0.15372E+03 412 0.454E+02 DAV: 3 -0.296448270211E+03 -0.55037E+01 -0.54726E+01 516 0.857E+01 DAV: 4 -0.296558918897E+03 -0.11065E+00 -0.11062E+00 432 0.122E+01 DAV: 5 -0.296564115002E+03 -0.51961E-02 -0.51960E-02 568 0.177E+00 0.512E+00 ... ... ... ... ... ... DAV: 11 -0.295718441201E+03 0.31316E-05 -0.40516E-06 436 0.471E-02 0.256E-03 DAV: 12 -0.295718441337E+03 -0.13610E-06 -0.13352E-06 276 0.146E-02 N E dE d eps ncg rms rms(c) gam= 0.000 g(H,U,f)= 0.142E-07 0.000E+00 0.322E-02 ort(H,U,f) = 0.000E+00 0.000E+00 0.000E+00 SDA: 1 -0.295718441659E+03 -0.29572E+03 -0.12885E-02 360 0.322E-02 0.000E+00 ... ... ... gam= 0.382 g(H,U,f)= 0.220E-07 0.167E-07 0.186E-10 ort(H,U,f) =-0.260E-08-0.389E-08 0.523E-10 DMP: 4 -0.295718441597E+03 0.43565E-09 -0.14510E-07 360 0.387E-07-0.644E-08 gam= 0.382 g(H,U,f)= 0.232E-08 0.318E-09 0.166E-11 ort(H,U,f) =-0.471E-08-0.181E-08 0.590E-11 DMP: 5 -0.295718441603E+03 -0.59431E-08 -0.61690E-10 360 0.264E-08-0.651E-08 final diagonalization p_tot=( 0.875E-06 0.875E-06 0.875E-06 ) N E dE d eps ncg rms rms(c) p_tot=( 0.875E-06 0.875E-06 0.875E-06 ) dp_tot=( 0.000E+00 0.000E+00 0.000E+00 ) diag[e(oo)]=( --- --- 1.00000 ) gam= 0.000 g(H,U,f)= 0.149E-04 0.000E+00 0.000E+00 ort(H,U,f) = 0.000E+00 0.000E+00 0.000E+00 SDA: 1 -0.295718441612E+03 -0.14804E-07 -0.59582E-05 360 0.149E-04 0.000E+00 ... ... ... ... ... ... gam= 0.519 g(H,U,f)= 0.392E-07 0.000E+00 0.000E+00 ort(H,U,f) = 0.919E-08 0.000E+00 0.000E+00 DMP: 9 -0.295718447444E+03 -0.21085E-07 -0.17608E-07 360 0.392E-07 0.919E-08 p_tot=( 0.868E-06 0.868E-06 0.116E-02 ) dp_tot=( -0.721E-08 -0.723E-08 0.116E-02 ) diag[e(oo)]=( --- --- 1.91593 ) gam= 0.519 g(H,U,f)= 0.210E-07 0.000E+00 0.000E+00 ort(H,U,f) =-0.164E-08 0.000E+00 0.000E+00 DMP: 10 -0.295718447453E+03 -0.83301E-08 -0.80481E-08 360 0.210E-07-0.164E-08 final diagonalization p_tot=( 0.860E-06 0.860E-06 0.118E-02 ) dp_tot=( -0.154E-07 -0.155E-07 0.118E-02 ) diag[e(oo)]=( --- --- 1.92723 ) 1 F= -.29571845E+03 E0= -.29571845E+03 d E =-.223452E-12where one can discern three distinct blocks of SCF iterations. The first one (steps marked with DAV) corresponds to the calculation of the zero-field groundstate. After this groundstate has been reached, the -point mesh is regenerated using a set of symmetry operations, which takes into account that the symmetry of the system is possibly reduced by the applied electric field. In most cases the new set of -points is larger than the original one. The orbitals at the additional -points are generated from their symmetry equivalent counterparts in the zero-field case. This expanded set of orbitals is now reoptimized until convergence is better than

Then the electric field is switched on, and the field-polarized groundstate is calculated. This is the last block of steps marked with DMP. From the change in the electronic dipole moment due to the electric field VASP computes (part of) the components on the diagonal of the ion-clamped static dielectric tensor. This information is found both in the OUTCAR file and on stdout:

diag[e(oo)]=( ---- ---- 1.92723 )

To speed up the computation of the field-polarized groundstate one may
set `SKIP_EDOTP`=.TRUE. to avoid the recalculation of the electronic polarization
in Eq. (6.37) at each iteration during the scf procedure.
However, the additional term in Hamiltonian (second term on the right-hand-side of
Eq. (6.39) has to be correctly included and can not be kept fixed.
Basically this means one does not minimize the total energy but optimizes
the orbitals until a stationary point is reached.
A stationary point is considered to be reached as soon as the norm of the
gradient on the orbitals is smaller than `EDIFF`/100, and the SCF
procedure will stop.
In the case of the previous example this will lead to:

N E dE d eps ncg rms rms(c) gam= 0.000 g(H,U,f)= 0.149E-04 0.000E+00 0.000E+00 ort(H,U,f) = 0.000E+00 0.000E+00 0.000E+00 SDA: 1 -0.295718441603E+03 -0.60750E-08 -0.59581E-05 360 0.149E-04 0.000E+00 gam= 0.519 g(H,U,f)= 0.332E-05 0.000E+00 0.000E+00 ort(H,U,f) = 0.629E-05 0.000E+00 0.000E+00 ... ... ... ... ... ... gam= 0.519 g(H,U,f)= 0.124E-07 0.000E+00 0.000E+00 ort(H,U,f) =-0.141E-08 0.000E+00 0.000E+00 DMP: 11 -0.295718435607E+03 0.13956E-06 -0.46725E-08 360 0.124E-07-0.141E-08 gam= 0.519 g(H,U,f)= 0.637E-08 0.000E+00 0.000E+00 ort(H,U,f) = 0.218E-10 0.000E+00 0.000E+00 DMP: 12 -0.295718435599E+03 0.78403E-08 -0.25522E-08 360 0.637E-08 0.218E-10 final diagonalization p_tot=( 0.844E-06 0.844E-06 0.117E-02 ) dp_tot=( -0.313E-07 -0.313E-07 0.117E-02 ) diag[e(oo)]=( --- --- 1.92478 ) 1 F= -.29571844E+03 E0= -.29571844E+03 d E =-.223448E-12

N.B. Requests for support are to be addressed to: vasp.materialphysik@univie.ac.at